2022-06-21 10:01:24 来源:商业新知网
来源:ScienceAI
编辑:萝卜皮
(资料图)
目录
研究人员使用机器学习来加快微塑料的计数
科学家利用人工智能增强 X 射线数据分析
从显微镜图像中提取特征的弱监督机器学习模型
两体微透镜系统中普遍存在的统一简并
研究人员使用机器学习来加快微塑料的计数
微塑料无处不在——在我们喝的水、吃的食物和呼吸的空气中。但在研究人员能够了解这些粒子对健康的真正影响之前,他们需要更快、更有效的方法来量化分析这些粒子。
多伦多大学应用科学与工程学院的研究人员最近进行的两项研究提出了使用机器学习使微塑料计数和分类过程更容易、更快、更实惠的新方法。
首先,研究人员应用机器学习建立了一个预测模型,该模型采用训练有素的算法,可以从总体质量测量中估计微塑料计数。其优势在于允许研究人员仅手动处理收集到的样本的一小部分,并使用算法预测其余样本的数量,而不会引入额外的误差或方差。
该研究以「 Efficient Prediction of Microplastic Counts from Mass Measurements 」为题,于 2022 年 1 月25 日发布在《ACS ES&T Water》。
论文链接:
https://pubs.acs.org/doi/10.1021/acsestwater.1c00316
另外,2022 年 6 月15 日发表在《Science of The Total Environment》的文章「 Automatic quantification and classification of microplastics in scanning electron micrographs via deep learning 」,采用深度学习模型对微塑料进行自动定量和分类。
Shi使用扫描电子显微镜对微塑料的图像进行分割并对其形状进行分类。与视觉筛选方法相比,这种方法提供了更大的景深和更精细的表面细节,可以防止错误识别小而透明的塑料颗粒。
研究人员使用扫描电子显微镜来分割微塑料的图像并对其形状进行分类。与视觉筛选方法相比,这种方法提供了更大的景深和更精细的表面细节,可以防止错误识别小的透明塑料颗粒。
论文链接:
https://www.sciencedirect.com/science/article/pii/S0048969722009950?via%3Dihub
相关报道:
https://phys.org/news/2022-04-machine-microplastics.html
科学家利用人工智能增强 X 射线数据分析
人工智能正在改变从生物学到材料科学的每一个科学领域。当涉及到某些类型的 X 射线实验时,新的人工智能方法使研究人员能够对他们的样本进行更准确的分析,并在更短的时间内完成。
美国能源部阿贡国家实验室的一组研究人员,正在利用人工智能来执行分析高能 X 射线实验数据的研究。借助一种基于神经网络的方法 BraggNN,Argonne 团队可以更精确地识别布拉格峰——指示微小单个晶体位置和方向的数据点——只需花费过去的一小部分时间。
该研究以「BraggNN: fast X-ray Bragg peak analysis using deep learning」为题,于年月日发布在《IUCrJ》。
论文链接:
https://journals.iucr.org/m/issues/2022/01/00/fs5198/index.html
相关报道:
https://phys.org/news/2022-05-scientists-x-ray-analysis-artificial-intelligence.html
从显微镜图像中提取特征的弱监督机器学习模型
深度学习模型已被证明是用于分析大量图像的非常有前途的工具。在过去十年左右的时间里,它们已被引入各种环境,包括研究实验室。
在生物学领域,深度学习模型可能有助于对显微镜图像进行定量分析,使研究人员能够从这些图像中提取有意义的信息并解释他们的观察结果。然而,要做到这一点的训练模型可能非常具有挑战性,因为它通常需要从显微镜图像中提取特征(即细胞数量、细胞面积等)并手动注释训练数据。
CERVO 大脑研究中心、智能与数据研究所和加拿大拉瓦尔大学的研究人员最近开发了一种人工神经网络 MICRA-Net,该网络可以使用更简单的图像级注释对显微镜图像进行深入分析。
该研究以「 Microscopy analysis neural network to solve detection, enumeration and segmentation from image-level annotations 」为题,于年月日发布在《Nature Machine Intelligence》。
论文链接:
https://www.nature.com/articles/s42256-022-00472-w
相关报道:
https://techxplore.com/news/2022-05-weakly-machine-features-microscopy-images.html
两体微透镜系统中普遍存在的统一简并
根据实际天文观测训练的人工智能算法现在在筛选大量数据以发现新的爆炸恒星、识别新类型的星系和检测大质量恒星的合并方面优于天文学家,从而加快了世界上最古老科学的新发现速度。
人工智能,可以揭示更深层次的东西,加州大学伯克利分校的天文学家发现:广义相对论产生的复杂数学中隐藏着意想不到的联系——特别是该理论如何应用于寻找其他恒星周围的新行星。
该团队描述了一种人工智能算法是如何发展起来的,当此类行星系统经过背景恒星前并短暂地使其变亮时,该算法可以更快地检测出系外行星,这一过程被称为引力微透镜(gravitation microlensing),它揭示了现在用来解释这些观测的几十年前的理论是多么的不完整。
该研究以「 A ubiquitous unifying degeneracy in two-body microlensing systems 」为题,于年月日发布在《Nature Astronomy》。
来源 :scienceAI , RAD极客会推荐阅读,不代表RAD极客会立场,转载请注明,如涉及作品版权问题,请联系我们删除或做相关处理!
在数字化建设大潮中,政企数字化转型存在着事项繁杂、过程碎片化,各环节标准化程度低,市场不透明、成功经验难复制等问题。
前几天Intel在国内发布了首款桌面游戏显卡ArcA380,而且现在是中国区独占,售价1030元,在千元级市场上配备了6GB显存和96bit位宽,号称性能
AMDZen4锐龙、NVIDIA RTX 40系显卡、Intel13代酷睿……下半年琳琅满目的硬件新品让DIY玩家期待不已。关于RTX 40系显卡,爆料达人Kopite7
融资|「Sesame」完成2700万美元B轮融资,「Sesame」面向着一个由医生和患者组成的双向市场,消费者可以在其网站上搜索、购买药品或预约医生。
该企业在该场景中,选择800张缺陷图片,无代码训练出精确率达90%的可用模型。
在数字化建设大潮中,政企数字化转型存在着事项繁杂、过程碎片化,各环节标准化程度低,市场不透明、成功经验难复制等问题。
中科方德发布“融合生态新平台”,为国产软硬件生态建设开辟了新的方向。
日前,2022年中广电移动5G号卡普通快递服务和配送上门激活服务采购项目比选——中选候选人公示。
在手机普及之后,如今人们对通信网络的信号好不好也变得格外在意起来。